
The Hierarchical Fair Competition (HFC)
Framework for Sustainable Evolutionary

Algorithms

Jianjun Hu hujianju@msu.edu
Department of Computer Science and Engineering,
Erik Goodman goodman@egr.msu.edu
Kisung Seo ksseo@egr.msu.edu
Zhun Fan fanzhun@egr.msu.edu
Department of Electrical and Computer Engineering,

Rondal Rosenberg rosenber@egr.msu.edu
Department of Mechanical Engineering,
Michigan State University, East Lansing, MI, 48823, USA

Abstract
Many current Evolutionary Algorithms (EAs) suffer from a tendency to converge pre-
maturely or stagnate without progress for complex problems. This may be due to the
loss of or failure to discover certain valuable genetic material or the loss of the capa-
bility to discover new genetic material before convergence has limited the algorithm’s
ability to search widely. In this paper, the Hierarchical Fair Competition (HFC) model,
including several variants, is proposed as a generic framework for sustainable evo-
lutionary search by transforming the convergent nature of the current EA framework
into a non-convergent search process. That is, the structure of HFC does not allow the
convergence of the population to the vicinity of any set of optimal or locally optimal
solutions. The sustainable search capability of HFC is achieved by ensuring a contin-
uous supply and the incorporation of genetic material in a hierarchical manner, and
by culturing and maintaining, but continually renewing, populations of individuals of
intermediate fitness levels. HFC employs an assembly-line structure in which subpop-
ulations are hierarchically organized into different fitness levels, reducing the selection
pressure within each subpopulation while maintaining the global selection pressure to
help ensure the exploitation of the good genetic material found. Three EAs based on
the HFC principle are tested - two on the even-10-parity genetic programming bench-
mark problem and a real-world analog circuit synthesis problem, and another on the
HIFF genetic algorithm (GA) benchmark problem. The significant gain in robustness,
scalability and efficiency by HFC, with little additional computing effort, and its toler-
ance of small population sizes, demonstrates its effectiveness on these problems and
shows promise of its potential for improving other existing EAs for difficult problems.
A paradigm shift from that of most EAs is proposed: rather than trying to escape from
local optima or delay convergence at a local optimum, HFC allows the emergence of
new optima continually in a bottom-up manner, maintaining low local selection pres-
sure at all fitness levels, while fostering exploitation of high-fitness individuals through
promotion to higher levels.

Keywords
Sustainable evolutionary algorithms, building blocks, premature convergence, diver-
sity, fair competition, hierarchical problem solving, genetic programming

c©2005 by the Massachusetts Institute of Technology Evolutionary Computation 13(1): xxx-xxx

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

1 Introduction

Evolutionary Algorithms (EAs) have been applied to more and more challenging prob-
lems, including evolvable hardware (Yao and Higuchi, 1998), evolutionary robotics
(Harvey et al., 1997), electrical circuit and control system synthesis (Koza et al., 2000),
and many other engineering design problems. One of the major issues with these
complex real-world problems is the scalability problem, as discussed in (Koza, 1994;
Vassilev and Miller, 2000). Roughly speaking, an algorithm is not scalable if the com-
puting effort to find an optimal (or acceptably good) solution grows beyond economic
practicality as the size of the problem becomes large enough to represent important
real-world situations. This problem is usually related to the premature convergence
phenomenon of EAs: the loss, before an optimal solution is discovered, of the capabil-
ity to make fitness progress, often attributed to a loss of population diversity (typical
in genetic algorithms) or to a loss of the capability to generate useful variation because
of the convergence of a portion of the genome (as often occurs at the root of the trees
in classical genetic programming). For hard problems, tuning parameters or adjust-
ing ad hoc operators usually does not provide scalability. However, many real-world
problems are characterized by the existence of inherent structural regularity or even
building blocks of various sizes in the solutions. Their successful solution by evolution-
ary means often amounts to an incremental form of evolution with gradual and steady
progress, or with a succession of improvements, as described by (Holland, 2000). Evo-
lutionary algorithms with this kind of steady-state innovation capability (Goldberg,
2002) are called continuing or sustainable evolutionary algorithms.

Sustainable EAs are closely related to two major issues in EA research, namely, pre-
mature convergence and scalability. Currently, there are three main families of strate-
gies for fostering sustainable search in EAs.

The first one is centered around the concept of diversity. It is based on the fact
that at convergence, the diversity of the EA population is low. Genetic operators
such as crossover and mutation, when coupled with selection and applied to a nearly-
converged population, tend to produce solutions that resemble those already in the
population, or the population would not have converged to that point in the first place.
However, while maintenance of diversity is a necessary condition for avoiding of pre-
mature convergence, it is not a sufficient one. Many methods of maintaining high di-
versity are not effective in maintaining high-quality search – for example, using a very
high mutation rate or introducing many randomly initialized individuals to a highly-
evolved population is typically not very effective, but are sometimes employed. Many
other more effective techniques are proposed to maintain or increase the diversity of a
population, including niching methods such as fitness sharing and crowding, restricted
mating, island or multi-population models, pygmies and civil servants (Ryan, 1996),
species-conserving GA (Li et al., 2002), etc. Diversity can also be explicitly maintained
by allowing different subpopulations to use different representations or resolutions,
as in the injection island GA (iiGA) (Lin et al., 1994). Good surveys are provided in
(Mahfoud, 1995; Darwen, 1996; Ryan, 1996).

The second approach toward sustainable evolutionary search is conducted in the
context of incremental evolution, where a simplified version (or subproblems) of a
problem is subjected to evolution, the results of which will be used as starting point
for a more complex version of the problem. Harvey (1992) proposed the Species
Adaptation GA (SAGA), which uses genetically fairly converged populations during
the search. SAGA is suitable for incremental evolution in which the problem itself
changes over time, such as dynamic optimization problems and evolutionary robotics.

2 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

It usually depends on a variable-length genotype representation and neutral network to
fight against premature convergence. This kind of incremental evolution with variable
genotypes, when coupled with speciation, has achieved significant results in evolving
neural networks (Stanley and Miikkulainen, 2002). A similar, but more complex, evo-
lutionary approach has also been used to improve scalability for evolvable hardware,
evolving increasing levels of user-defined subsystems (Torresen, 2002) with a simple
divide-and-conquer approach.

The last, but most important, line of study on sustainable EA design is centered
around the concept of building block supply, growth and mixing (Goldberg, 2002).
Messy GAs and other competent GAs (Goldberg, 2002) are characterized by the identi-
fication and recombination of building blocks, and have mainly been applied to binary-
encoded GAs. The pervasiveness of building blocks (or subcomponents) in the physi-
cal and biological world strongly suggests that competent EAs for complex real-world
problems will rely heavily on the capability to maintain population diversity, to con-
tinue exploration, and to exploit extant building blocks (Holland, 2000). The success
of competent GAs (Goldberg, 2002) for difficult problems has confirmed this, but it is
only the first step toward exploiting the building block concept. However, the concept
of good, co-adapted genetic material as used here does not require that it be tightly
linked, as in the classical building block definition as a short, low-order, high-fitness
schema. Good genetic material may also be of higher order, and loci need not be adja-
cent on the chromosome to constitute good genetic material for further evolution, as is
amply demonstrated in evolution strategies work.

Another important observation of the physical and biological world is that there
exist successive levels of building blocks from nuclei to atoms to molecules to poly-
mers; from organelles to cells to tissues to organs to organisms to ecosystems. The
maintenance and evolution of all levels of hierarchical subsystems or building blocks is
essential to the efficiency of nature in forming complex systems. Simon (1973) showed
that hierarchical systems evolve much more rapidly from elementary constituents than
will non-hierarchical systems containing the same numbers of elements. This kind of
hierarchical strategy for problem solving has been explored first in genetic program-
ming with ADFs (Koza, 1994), module acquisition (Angeline and Pollack, 1994) and
Adaptive Representation (AR) (Rosca and Ballard, 1994), and later in a genetic algo-
rithm, hBOA, the hierarchical extension of BOA (Pelikan and Goldberg, 2001). These
approaches are somehow representation specific and rely on the explicit identification
of building blocks in the forms of ADFs, modules, or merged variables. A similar hi-
erarchical strategy is also used in coevolution for subcomponent discovery and assem-
bly (Potter and De Jong, 2000). There are also some manual hierarchical divide-and-
conquer strategies with multiple subpopulations (Aickelin et al., 2001; Hsu et al., 2002;
Torresen, 2002; Eby et al., 1999) .

However, there is another strategy for exploiting the structure of the problem space
to conduct efficient evolutionary search. Evolutionary algorithms such as evolution
strategies do not rely on identifying building blocks, but rather employ what we shall
here call stepping stones to guide their evolutionary progress. A stepping stone is de-
fined as an individual of a given fitness level that is judged, relative to its parent(s) or
others of the fitness level of its parent(s), as worth keeping. This does not depend upon
the existence or explicit identification of building blocks or other properties or schemata
of the problem that are important to producing high-fitness solutions. While evolution
strategies use only a single level of stepping stones, the Hierarchical Fair Competition
(HFC) method described here will use a hierarchy of stepping stones stratified by fit-

Evolutionary Computation Volume 13, Number 1 3

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

ness levels.
Despite these efforts, the very convergent nature of the existing EA framework still

keeps us from achieving scalability for many complex problems. EA practitioners still
struggle between large population sizes with a single epoch and small population sizes
with multiple epochs (Goldberg, 1999; Luke, 2001) . The building-block-discovering
mechanisms like ADF need to be coupled with a sustainable search procedure that can
make sustainable progress and have little risk of premature convergence.

This paper introduces a generic framework, called Hierarchical Fair Competition
(HFC), for sustainable evolutionary algorithms. This mechanism was devised by con-
sidering the prerequisite of sustainable evolution, including diversity maintenance, in-
cremental development, and assembly of good genetic material at all fitness levels.
Because it has the capability to ensure sustained diversity, HFC is also believed to be
applicable to EAs such as evolution strategies (ES), which, like HFC, do not depend on
the existence of building blocks and do not require a crossover operator, although that
applicability has not been shown in this paper.

The next section describes two observations and two assumptions about existing
EAs, and discusses their effects on the performance of current EAs for difficult prob-
lems. Next, two requirements for sustainable evolution met by the HFC evolutionary
model are described, and some related techniques in this context are discussed. In
Section 3, the HFC model is presented, including its original metaphors and its three
components. Two adaptive variants of HFC are introduced that allow HFC to adapt
to the search space of the problem. Section 4 then presents the experimental results of
HFC for a genetic programming benchmark problem and a real-world system synthesis
problem. Section 5 introduces a new robust GA named QHFC, obtained by combining
HFC and deterministic crowding, and it demonstrates how HFC can endow a classical
convergent GA with a robust and sustainable search capability. After some discussion
and analysis of the HFC model in Section 6, the paper concludes with proposals for
future directions of research.

2 Background

2.1 Two Observations and Two Assumptions in Typical EA Frameworks

Current EA techniques carry with them implicit assumptions about evolutionary
search. There are two important observations and two implicit assumptions about
most current EAs that can prove detrimental to their performance on many difficult
problems, but which HFC can help to alleviate.

2.1.1 Observation I: The average absolute fitness of the population increases
continually

One prominent observation about the typical EA framework is that as the evolutionary
process goes on, the average absolute fitness of the population gets higher and higher.
The population then seems to gradually lose its capability for exploration, until conver-
gence to the global optimum or premature convergence (to some undesired region of
the search space) finally occurs. Many algorithms use rank-based or tournament-type
selection methods to enable them to continue to distinguish between better and worse
individuals in the population, but that does not solve this problem, as explained below.
People associate this loss of exploratory capability with the loss of diversity and try to
increase the diversity of the population as a remedy. But actually, loss of diversity is
just a symptom of this phenomenon - diversity per se is not sufficient: what is required
is to maintain useful diversity. The more direct reason that premature convergence

4 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

occurs is that with increasing average fitness of the population, only those new indi-
viduals with competitively high fitness tend to be allowed to survive. However, new
”explorer” individuals in fairly different regions of the search space usually have low
fitness, until enough local exploration and exploitation of their beneficial characteris-
tics occur. Even for those with competitive fitness, their sparse distribution in distant
regions still exposes them to the risk of being lost as the result of insufficient sampling
or genetic drift. This explains why simply increasing the mutation rate or inserting
random individuals does not work well: a highly evolved individual with co-adapted
components, when mutated strongly or recombined with a random individual, almost
always leads to inferior offspring. Random individuals or extensively mutated individ-
uals usually have low fitness and can not survive long enough to get their new genetic
material exploited as their loci have not yet been able to co-adapt to form high-fitness
schemata. This means that the higher the average fitness of the population, the less it
has the capability to make and utilize large genetic modification, while small modifica-
tion can only perturb the high-fitness individuals and it cannot move them out of local
optima. This gradual loss of the capability to incorporate new genetic material is one
of the key factors leading to premature convergence.

Some kind of mechanism is needed to reduce this effect of increasing the average
fitness of the population (or to reduce the domination of the population by the earliest-
discovered individuals of the highest fitness), which make it hard for new individuals
(with less well co-adapted genetic material and usually with lower fitness) to survive.
The Species Conserving GA (Li et al., 2002) uses similarity-based niching to explicitly
keep those exploratory ”not highly fit but different enough species seed” individuals.
Fitness sharing and crowding use a similar strategy to keep ”not highly fit but different
enough” exploratory individuals by limiting the number of individuals at specific local
search regions called niches. However, such techniques suffer from a property of the
search spaces of many difficult problems, as described next.

2.1.2 Observation II: Many difficult problems have enormous and highly
multimodal search spaces

Many difficult search problems (and in fact, many of those at which the HFC methods
described here are aimed) are made difficult because their search spaces are enormous,
with high dimensionality and high multimodality. (There are other types of difficult
search problems, of course – for example, needle-in-a-haystack problems – that these
methods may not address any better than other methods will. But for the purposes
of this paper, let us consider first problems made hard because of high dimensional-
ity, large cardinality of many of the dimensions, and strong multimodality). Distance
or similarity-based niching, multi-population and search space division methods are
widely used to maintain a desired level of population diversity. Crowding and de-
terministic crowding (Mahfoud, 1992) work by replacing similar individuals to allow
space for different individuals. Fitness sharing uses carrying capacity of niches to keep
diverse individuals. The island parallel model uses multiple subpopulations in the
hope that each accommodates different candidate solutions, with only infrequent mi-
gration to aid exploitation. SCGA (Li et al., 2002) uses similarity-based species protec-
tion to promote diversity. Tsutsui and Ghost (1998) use search space division to keep
diversified populations. All these techniques work by spreading or pushing individu-
als horizontally (rather than ”vertically” along the fitness dimension in Figure 1) to dif-
ferent areas in the search space (Figure 1) – for example, fitness sharing systematically
prevents individuals from clustering at a few high-fitness peaks. They strive to main-

Evolutionary Computation Volume 13, Number 1 5

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

fitness

Dimension

x1

x2

x3

xn

...

f

Xi

fitness

expansion of horizontal

spreading techniques

Figure 1: Enormity of the search space and local optima and the expansion in horizontal
spreading EAs

tain genotypic or phenotypic diversity. But they work well only with sufficiently large
population sizes or sufficient numbers of subpopulations. Koza et al. (1999) worked
with population sizes of 350,000 or even larger to achieve satisfactory results, confirm-
ing this capability, but at significant cost. However, as is shown in Section 5, increasing
population size is not a scalable solution for difficult problems and may induce unnec-
essarily high computational cost.

It is clear that the horizontal genotype or phenotype spreading techniques men-
tioned above do not solve the scalability problem for addressing difficult problems, as
they perform poorly as the size and multimodality of the search space increases. As
illustrated in Figure 1, even a one-dimensional search problem can be highly multi-
modal. For problems of high dimensionality (many engineering problems have 50-100
or more independent design variables) or for problems in which the number of local
optima grows exponentially with problem size, the search space and number of local
peaks (or attractors) becomes too large to allocate sufficient population size to accom-
modate representatives of most of them. Even though there are some techniques to
reduce the number of effective niches to some extent (Goldberg et al., 1992), the issue
of requiring a huge population size is still not resolved. This difficulty is caused by
some deep design assumptions of the current EA framework about how an EA should
work.

2.1.3 Assumption I: Problems can be reasonably addressed using an EA
conducting a single-thrust search

As the motivation of using EAs is to find solutions with high fitness, EAs are usually
taken as a single-thrust search process: starting from random populations, some lower-
level building blocks are discovered and assembled into higher level building blocks
(or, as in the case of evolution strategies, some decision variables evolve decreasing
magnitudes for their perturbations) and the best fitness and average fitness of the pop-
ulation increase until stagnating or reaching specified stopping criteria. For example,
messy GAs are to be sized such that the initial population is sufficient to ensure an ad-
equate supply of raw building blocks (Goldberg et al., 1993). Population-sizing models
for GAs are derived (Goldberg, 1989; Goldberg et al., 1992) based on takeover times
of building blocks in an (implicitly) single thrust evolution. Impractically large popu-
lation sizes would be needed to make fitness sharing work for massively multi-modal
problems (Goldberg et al., 1992). Huge population sizes are used to ensure sufficient
diversity in multi-population parallel GP (Koza et al., 1999), still based on the single-
thrust EA model.

6 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

For difficult problems with a huge number of local optima and a complex search
space, it is inappropriate to assume that all building blocks or potentially important
combinations of genetic material are present in the initialization stage, and even if
they were, that they would be able to survive long enough to be exploited, due to un-
balanced sampling resulting from their different degrees of salience (Goldberg (1999)
treats the building block aspect). Some type of ”assembly line” sustainable EA search
process is needed. In such a process, a random individual generator continuously feeds
new individuals into the EA population. While this mechanism would be completely
ineffective in an ordinary GA (because the new individuals are grossly uncompetitive
in the populations they enter and make poor mates for highly evolved solutions), this
kind of continuous, probabilistically complete supply of building blocks can partially
relieve messy GAs and other EA techniques from the burden of unfeasibly large pop-
ulation size requirements for difficult problems. That is, no particular minimum pop-
ulation size is required at any one instant. However, simply introducing random indi-
viduals continuously into a population experiencing increasing average fitness is not
sufficient to achieve the desired result, as explained in Section 2.1.1. HFC provides a
hierarchical method to implement this sustainable EA search process. This is clearly
confirmed in Section 5, where an HFC-enabled simple GA is able to solve reliably a
256-bit non-shuffled Hierarchical-IF-and-only-iF (HIFF) problem (Watson and Pollack,
1999) with a population size of 100, while a simple GA with deterministic crowding
with or without reinitialization cannot solve it reliably even with a population size of
4000.

2.1.4 Assumption II: Premature convergence can be adequately handled by
maintaining the genotypic and/or phenotypic diversity of a population of a
reasonable size throughout the run

Loss of genotypic diversity among intermediate-fitness individuals typically leads to
loss of further exploratory power. The entities converging could be structures near the
root of a GP tree, a group of loci in a GA, or a set of decision variables in ES. EAs work
by accumulating a succession of improvements. High fitness individuals are usually
evolved in this incremental way, in which lower-level building blocks are assembled
into higher-level building blocks, or the structures of moderate-fitness individuals be-
come fixed. The higher the fitness of the individual, the more tightly those loci become
co-adapted to each other. In the traditional single-thrust EA framework, the evolution-
ary process cannot guarantee that all such intermediate-level structures grow at similar
speeds, and as a result, only some of them get a chance to be sampled and recom-
bined, while others are lost. At the same time, the ”critical initial generations” effect
says, ”unless a schema (or its components) grows at the outset, its chances for success
later are quite poor” (Goldberg, 2002). This is because single-thrust EAs do not tend
to preserve the stepping stones that were used to make the initial climb up the fitness
landscape, nor to maintain a ”place” where those stepping stones may be regenerated.
Thus, they lack the capability to incorporate new genetic material continually. All the
individuals are marching toward the fitness frontier or the highest-fitness regions of
the search space discovered to date. So essentially, for single-thrust EAs, the search
process converges rapidly at the outset with regard to the majority of the intermediate-
fitness structures present in the population. The diversity-preservation mechanisms
soon concentrate on preserving genotypic diversity among the highest-fitness individ-
uals, neglecting the individuals that constituted the ”path” to the top. The premature
convergence of the best individuals is then to a large extent caused by the premature

Evolutionary Computation Volume 13, Number 1 7

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

random

individuals

individuals containing intermediate

levels of building blocks

end products: the

solution

building blocks from low order to high orderlow high

Figure 2: The assembly line structure of the sustainable EA model

loss of useful lower-fitness individuals.
The importance of maintaining and continuously generating new ”stepping

stones” suggests a new model for an EA (Figure 2). This model arranges process-
ing units in a series to form an ”assembly line”. Randomly generated individuals are
fed into one end unit of this assembly line, in which individuals with different desir-
able characteristics random ”chunks” are assembled into individuals with better-than-
random fitness. The output of this first processing unit, the first-level stepping stones,
is continually fed to the next processing unit for assembly of higher-performance step-
ping stones, and so on. The HFC model provides exactly such an assembly line process-
ing structure for continuously supplying and assembling intermediate levels of step-
ping stones.

2.2 Two Requirements for Sustainable Evolution Met by the HFC Model

Given an understanding of how the above two observations and two assumptions
about traditional EAs reflect impediments to their performance, the HFC model has
been devised to meet two requirements described below that are believed to be impor-
tant to assure sustainable search capability for an EA.

2.2.1 Requirement I: The Continuous Supply and Incorporation of Low-Level
Genetic Material

A sustainable EA must assure that a continual supply of low-level novel genetic ma-
terial is available for assembly or mutation to discover (or rediscover) individuals of
intermediate fitness levels, in order to sustain the search indefinitely.

In HFC, the individuals of the whole population are organized into a hierarchy
of fitness levels. A generator of random individuals continuously feeds raw genetic
material into an assembly line of processing units. This process does not rely on a huge
initial population to ensure an adequate supply of the raw material, as in (Goldberg,
1989). Even if during some initial generations, some beneficial or critical low-level
structures are not available or not selected, they can appear later with the continuing
inflow of random individuals from the generator, and can survive and be incorporated
into higher-fitness individuals that have a good chance of surviving to influence the
sustainable search.

Previous attempts to introduce random individuals into nearly converged popu-
lations to partially reinitialize them (for example, Goldberg, 1989; Whitley et al., 1991)
, or to increase the mutation rate dramatically when the population begins to converge
(for example, (Cobb and Grefenstette, 1993)) have difficulty incorporating lost building
blocks into highly evolved individuals, as described above in Section 2.1.1, especially
in the case of genetic programming. What does HFC do to change this situation? In a
converged population with many high-fitness individuals, the individuals are usually

8 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

composed of highly coupled or co-adapted subcomponents. When these individuals
undergo crossover with a random individual or are mutated strongly, the operations
almost always destroy the well-evolved closely coupled relationship, reducing the fit-
ness dramatically. So it is difficult for the highly converged (evolved) population to
jump out of local optima. This can also be explained based on Holland’s hypothesis
that, ”Neutrality decreases with each successive level” (Holland, 2000), which means
that for high-fitness populations, mutation doesn’t work as effectively as it does with
low fitness populations. Therefore, it is better to introduce random individuals or use
high mutation rates only in subpopulations that do not already contain high-fitness
individuals with highly co-adapted subcomponents. Accordingly, in HFC, the newly
generated random individuals are always incorporated into the low-fitness-level sub-
populations, so they can survive within the fair competition environment with low
selection pressure and be naturally utilized, with their beneficial genetic material mov-
ing up the assembly line only when refined to enable competitive survival at a higher
fitness level.

When one examines the fitness progress curve of most GP (and also GA) exper-
iments, the most salient observation is that the largest fitness gains typically occur in
the very early stages. The evolution in the later stages appears to be more like a refin-
ing process. In tree-based genetic programming, the initial stages of evolution usually
establish the general framework of the topology of the GP trees of an individual. The
nodes near the tree root converge relatively quickly. Actually, the higher the fitness,
the more constraints the established topology puts on possible later modifications, and
the less likely they are to become major innovations. It is not wise to effectively ter-
minate this phase after a very limited assembly process, as the fitness of individuals
rises. The phenomenon described here is very similar to Waddington’s canalization of
development (Waddington, 1942). Since highly evolved individuals have less and less
probability of changing their basic frameworks, it is preferable to maintain, somehow,
repositories of representative intermediate individuals, from which further innovation
may occur.

This analysis suggests introducing a paradigm shift in the strategy for avoiding
premature convergence. Instead of trying to help a highly converged population escape
local attractors, or to retard its convergence, a better strategy is to allow the continual
emergence of individuals that may populate new attractors, in a bottom-up manner, as
is seen in HFC. This process is kept unbiased by the high-fitness regions already found
in the search process.

2.2.2 Requirement II: The Culturing and Protection of Intermediate-Fitness Levels
of Individuals

Intermediate-fitness individuals (stepping stones) at a progression of advancing fitness
levels must be maintained and protected against elimination by high-fitness individu-
als discovered early, thereby sustaining them sufficiently to allow for their exploitation.

Goldberg (2002) stresses the importance of ensuring building block growth via
recombination for design of competent GAs. However, based on the analysis of Ob-
servation II, it is clear that competent GAs and other EAs may suffer from insufficient
population size and premature loss of intermediate building blocks, for sufficiently
difficult problems. While the HFC structure, unlike that of competent GAs, does not
require the existence of identifiable building blocks, for problems that have them, the
HFC model, with its assembly line structure of subpopulations in successive fitness lev-
els, provides a mechanism for continuously culturing lower-level building blocks into

Evolutionary Computation Volume 13, Number 1 9

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

higher-level building blocks, so long as different fitness levels implicitly correspond
to different levels of building blocks embedded in the individuals belonging to those
levels. Of course, this is possible only when the genetic operators somehow are able
to combine building blocks rather than disrupting building blocks as is the case for
two-point crossover in the shuffled HIFF problem (Watson and Pollack, 1999). Fitness
is already used as the signal for differentiating good building blocks from bad ones
or building blocks of different orders in messy GA schemes (Goldberg, 2002). This is
justified by the fact that high-fitness individuals usually have more strongly coupled
components (like real variables, binary genes, etc.). So these groups of strongly cou-
pled components can be regarded as higher-level building blocks. This kind of implicit
building block concept - i.e., not needing to explicitly identify the building blocks, but
maintaining them appropriately, nonetheless - distinguishes HFC from the competent
GAs (Goldberg, 2002) and from ADF in GP (Koza, 1994).

To reduce the ”founder effect” (Holland, 2000) - that early-discovered building
blocks interfere with finding and nurturing other competing building blocks - some
kind of protection mechanism must be used. This idea can be explored jointly with the
concept of diversity maintenance. Niching usually uses a distance measure to spread
and keep genotypically or phenotypically diverse individuals. Elitism is another mech-
anism sometimes used to protect good building blocks. The Species Conserving GA ex-
plicitly preserves ”different and good species seeds.” The Cohort GA (Holland, 2000)
uses delayed-but-guaranteed reproductions to reduce the loss of good schemata. HFC
can incorporate any or all of these techniques at each level. However, HFC provides
an additional mechanism to keep multiple diverse high-fitness individuals, along with
their intermediate genetic material. First, for each level, there is a continual inflow of
new individuals from lower levels. In this sense, HFC can be looked on as a hierarchi-
cal version of elitism, in which subpopulations at each level are the ”Halls of Fame” of
all lower-level subpopulations. This kind of hierarchical elitism is especially important
since the fractions of crossovers and mutations that produce better offspring decrease
with increasing fitness. It ensures that the products of these increasingly rarely success-
ful crossover and mutation operations get preserved and exploited. From a diversity
point of view, the whole population is highly diversified, since we have individuals
ranging from the random to the highly evolved. In fact, the ratio of high- to moderate-
to low-fitness individuals may be adjusted arbitrarily in HFC to control the relative
rates of exploration and exploitation. This additional diversity maintenance capability
is especially useful where distance criteria for niching are not available or are hard to
compute. It also allows stronger selection pressure at each level without the risk of
premature convergence of the population as a whole. While this requirement for pro-
tection of multiple fitness levels of individuals has been described above in the building
block framework of Holland and Goldberg, it does not depend on the existence of clas-
sical building blocks to be used effectively, unlike the competent GA mechanism for
explicit identification of building blocks.

2.3 Compatibility of HFC with Other Techniques for Increasing Scalability of
Evolutionary Algorithms

Goldberg (2002) describes two types of approaches to improve the scalability of an
EA. The first is the explicit building block discovery and exploitation mechanisms, as
used, for example, in his messy GA and in Koza’s automatically defined function (ADF)
(Koza, 1994), which may transform intractable problems into tractable ones. The sec-
ond type includes the family of parallel GA models, including both coarse- and fine-

10 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

grained variants, the reduction of the evaluation effort through the use of more rapidly
calculated approximations to the fitness function or fitness inheritance, and the hy-
bridization approach. As a generic framework for sustainable search, HFC is compati-
ble with all of these approaches, and may be applied in addition to any of them. HFC
is a natural extension of the island (coarse-grain) model for parallel EAs, although it
may also be implemented as a specialized selection scheme for breeding and survival
within a single population (Hu et al., 2003). It is also clear that the sustainable search
enabled by the assembly line structure of HFC, when coupled at each level with exist-
ing techniques like fitness sharing, species conserving, and elitism, can yield yet more
efficient and effective EAs, as is demonstrated in Section 5 and in more studies to be
reported in the future.

3 The HFC Model and its Adaptive Variants

3.1 The Metaphor: Fair Competition Principle from Societal and Economic
Systems

The HFC model was initially inspired by competition mechanisms observed in biolog-
ical, societal and economic systems. Competition is widespread in these systems, and
selection is sometimes very strong, but diversity remains large. In the biological world,
environmental niches are organized in different levels, occupied by all types of organ-
isms with different sizes. As Bonner pointed out, ”Size is a universal property of all
organisms and size niches remain constant over geological time” (Bonner, 2000). This
means that competition in natural evolution is essentially organized into different lev-
els and bacteria don’t compete directly with elephants. In human society, competitions
are also often organized into a hierarchy of levels. None of them will allow unfair com-
petition - for example, a young child will not normally compete with college students
in a math competition. Young individuals with potentially outstanding capabilities in
specialized areas do not have to face immediate competition with the most highly de-
veloped individuals in the population, but can rise rapidly as they become more able
to compete, to play an important role in future advances. After close examination, we
find there is a fundamental principle underlying many types of competition in both
societal and biological systems: the Fair Competition Principle. We use the educational
system to illustrate this principle in more detail.

In the educational system of China and many other developing countries, primary
school students compete to get admission to middle schools and middle school stu-
dents compete for spots in high schools. High school students compete to go to col-
lege and college students compete to go to graduate school (Figure 3) (in most Western
countries, this competition starts at a later level, but is eventually present, nonetheless).
In this hierarchically structured competition, at each level, only individuals of roughly
equivalent ability will participate in any competition; i.e., in such societal systems, only
fair competition is allowed. This hierarchical competition system is an efficient mech-
anism to protect young, potentially promising individuals from unfair competition, by
allowing them to survive, learn, and grow up before joining more intense levels of com-
petition. If some individuals are ”lost” in these fair competitions, they were selected
against while competing fairly only against their peers. If we take the academic level
as a fitness level, it means that only individuals with similar fitness can compete.

An interesting phenomenon sometimes found in societal competitions is the ”child
prodigy.” A ten-year-old child may have some extraordinary academic ability. These
prodigies may skip across several educational levels and begin to take college classes
at a young age. An individual with sufficient ability (fitness) can join any level of

Evolutionary Computation Volume 13, Number 1 11

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

Academic

level

primary

school

middle

school

high

school

college

graduate

school

Figure 3: In the educational system, low-level students compete to get admission to
higher-level schools. Competition is designed to exist only among individuals of simi-
lar ability levels

competition. This also suggests that in subpopulation migration, we should migrate
individuals according to their fitness levels, rather than according to ”time in grade.”

With such a fair competition mechanism that exports high-fitness individuals to
higher-level competitions, societal systems reduce the prevalence of unfair competi-
tion and the unhealthy dominance or disruption that might otherwise be caused by
”over-achieving” individuals. It maintains relatively low selection pressure at each
level while maintaining strong global selection pressure.

Similar ”fair competition” is also enforced in the economic world, where a variety
of regulations and laws (e.g., antitrust laws) are set up by the government or inter-
national organizations to ensure fair competition and exclude domination. The sys-
tem governing athletic competitions of various sorts is similar and well known. These
strategies are necessary to promote healthy competition and allow new start-ups to
have a chance to mature.

3.2 The Components of the HFC Model

Inspired by the fair competition principle and the hierarchical organization of compe-
tition within different levels in biological and societal systems, the Hierarchical Fair
Competition model (HFC) is proposed for use in genetic algorithms, genetic program-
ming, and other forms of evolutionary computation. The HFC model is composed of
three interdependent components.

3.2.1 The Hierarchical Organization of Subpopulations to Establish a Fitness
Gradient

In the HFC model (Figure 4), multiple subpopulations are organized in a hierarchical
way, in which each subpopulation belongs to a specific fitness level that accommodates
immigrating individuals within a specified range of fitness, and that forces emigration
of individuals with fitness above that range. The entire range of possible fitnesses is
spanned by the union of the fitness ranges of all levels. Each level has an admission
buffer that has an admission threshold determined either initially (fixed) or adaptively.
The admission buffer is used to collect qualified candidates, synchronously or asyn-
chronously, from the subpopulations of lower levels. Each level also has an export
fitness threshold, defined by the admission threshold of the next higher fitness level.

12 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

fitness

fmin

fmax
subpop9

subpop8

subpop7

subpop5,6

subpop3,4

subpop0,1,2

ADT5

Admission

Buffers

random

individual

generator

ADT:Admission

Threshold

ADT4

ADT3

ADT2

ADT1

level 1

level 2

level 3

level 4

level 5

fitness

level 6

(a) (b)

Figure 4: (a) In the HFC model, subpopulations are organized in a hierarchy by as-
cending fitness level. Each level (with one or more subpopulations) accommodates
individuals within a certain fitness range determined by its admission threshold (b)
The HFC model extends the search horizontally in the search space and vertically in
the fitness dimension and kills bad individuals at appropriate times while allowing
promising young individuals to grow up continuously

Only individuals whose fitnesses are above the admission threshold and below the ex-
port threshold of the fitness level of a given subpopulation are allowed to enter, or stay,
respectively, in that subpopulation. Otherwise, they are exported to a subpopulation
of the appropriate higher fitness level.

A problem that can occur at any fitness level is that the children produced via
mutation or crossover of individuals at a given fitness level have fitnesses below its
admission threshold. This could allow the average fitness of individuals at that level to
degrade below the admission threshold. This degradation problem can be dealt with
in any of several ways:

1. these low-fitness offspring can be allowed to remain in the level – reminiscent of
the occasional backward step allowed in simulated annealing – with the assump-
tion that the selection mechanism and immigration replacement policy will act
strongly enough that the average fitness remains satisfactorily above the admis-
sion level, or

2. the low-fitness offspring could be ”down-migrated” to a lower-level population,
but this is seen as undesirable – it is not these low-fitness individuals that are likely
to contain the building blocks we strive to preserve and recombine; or

3. offspring generated with fitnesses below the admission threshold could be dis-
carded, and the operation generating them repeated (perhaps for a fixed maxi-
mum number of times). This would tend to help combine building blocks into
higher-level ones; or

4. any offspring generated from lower fitness than their parent (or parents, in the case
of crossover) could be discarded (and the parents kept, instead), or

Evolutionary Computation Volume 13, Number 1 13

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

5. offspring could be generated from a chosen parent (or pair, for crossover) until
an individual with fitness at least as high as the parent (or the mean of the two
parents) is generated (subject to a maximum number of trials).

It may appear that option 3) is the most desirable, and would not lead to system-
atic degradation of the fitness level of any population. However, some experiments
with QHFC, discussed in Section 5, showed that policy 1) is computationally more ef-
ficient, so long as the lower levels can continue exporting individuals to higher levels.
This kind of ”fuzzy” segregation of fitness levels can also increase the diversity of the
population. The experiments reported below used policy 1), so did not discard any
offspring or demote them to lower-fitness subpopulations.

A useful extension to HFC (which was used here for static HFC experiments) is to
introduce one or more ”floating” subpopulations, with dynamic admission thresholds
that are continually reset to the admission threshold of the level in which the current
best individual has been found. Thus, these subpopulations provide additional search
in the vicinity of the advancing frontier in the fitness hierarchy. In this scheme, it is
reasonable not to start the evolution process in higher-level subpopulations until some
minimum number of immigrants above the admission threshold have entered them.

3.2.2 Random Individual Generator: the Source of Genetic Material

As illustrated in Figure 4, at the bottom fitness level, there exists a random individual
generator that feeds ”raw” genetic material (in the form of individuals) continuously
into the bottom processing level. It is beneficial if this generator is made to be unbiased
such that it is able to supply a complete set of all possible low-level building blocks,
unless there is prior knowledge about the search space that should be used to bias
the generator. Of course, new building blocks may be discovered by recombination
and other genetic operations. The inflow of random individuals relieves HFC from
depending on a large initial population size to provide and preserve enough different
genetic material at the outset to allow a thorough search of the problem space in a single
”epoch.”

3.2.3 The Migration Policy from Lower to Higher Fitness Levels

The exchange of individuals can be conducted synchronously at a certain interval or
asynchronously, as in many parallel models. At each moment of exchange, or, if de-
sired, as each new individual in a subpopulation is evaluated, any individual whose
fitness qualifies it for a higher level is exported to the admission buffer of whatever
higher level has a fitness range that accommodates the individual. After the exporting
processes of all levels finish, the subpopulations of each level import an appropriate
number of qualified candidates from their admission buffers to replace some worst
individuals (unless some other local diversity maintenance policy is used to select can-
didates for replacement). If subpopulations at the base level find any open spaces left
over from exporting, they fill those spots with random individuals. If subpopulations
of higher levels find empty spaces after importing individuals from their admission
buffers or if their admission buffers are empty, they can either mutate current mem-
bers or select two members and do crossover to generate the needed number of new
individuals, or they can import individuals in the subpopulation from the level below,
even though they do not meet the admission criterion. (Note: the bottom level subpop-
ulations import from the random individual generator). In the experiments reported
here, crossover is used to make up any shortfall of individuals at any level except the
bottom level.

14 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

In the HFC methods reported here, migration of individuals was allowed in only
one direction, from lower-fitness subpopulations to higher-fitness subpopulations, but
migration is not confined to only the immediately higher level. In addition, any ”de-
graded” individuals generated in a population of a given fitness level were not ”exiled”
to a lower level, even though they may not have met the admission criterion for mi-
grating into the level-that is, method 1) above was used. This may allow for promising
jumps with short-term fitness degradation in the fitness landscape. It can also be justi-
fied in that, despite the possible decrease of the fitness, many useful intermediate-level
building blocks may still remain. In the work reported here, the admission buffer is
volatile. That is, at each migration time, these buffers are filled with candidates and are
emptied after the exporting process is complete at each migration interval. However, it
is expected that, at some point, admission buffers may be used as the main persistent
repository of good genetic material, while the subpopulations serve as the assembly
workshops, similar to the way ”external populations” are used in some modern multi-
objective evolutionary algorithms such as PAES (Knowles and Corne, 2000).

The algorithmic procedure of HFC is similar to a simple multi-population GA ex-
cept the above controlling mechanisms, namely, the setting and adjusting of admission
thresholds, the migration policy, and the incorporation of random individuals into the
bottom levels. For simplicity, the detailed algorithm pseudo code is omitted here.

3.2.4 Setting the Parameters of the HFC Model

Several decisions must be made to configure the HFC model. First, the number of
fitness levels and their admission thresholds should be determined according to the
fitness range of the problem. For difficult problems, more levels are preferred to al-
low more precise control of the assembly line for good genetic material. The export
threshold of the bottom level can be set, for example, as the average fitness of random
individuals of the first generation. Other admission thresholds can be set by dividing
the fitness range evenly (used in the static HFC algorithm) or with some adaptive ad-
justment as in the adaptive HFC to be discussed below. As it is often easier to make
large fitness jumps in a lower-level subpopulation, they may often be usefully assigned
larger fitness ranges, leaving the high-level populations more closely spaced. But, of
course, that depends on the properties of the fitness landscape of the problem. The crit-
ical point is that the whole range of possible fitnesses must be spanned by the union of
the ranges of all levels of subpopulations. Of course, the highest-level subpopulation(s)
need no export threshold (unbounded above) and the lowest-level subpopulation(s)
need no admission threshold (unbounded below).

The number of levels in the hierarchy or number of subpopulations (if each level
has only one subpopulation) can be determined initially or adaptively. In the static HFC
model, the number of fitness levels into which the entire fitness range will be divided
is decided in advance, as are the fitness thresholds and all other GA parameters. In
the adaptive HFC model, the number of levels, number of subpopulations, size of each
subpopulation, and admission and export fitness thresholds of each can be determined
automatically and adapted as the evolution proceeds. The benefit of the adaptive HFC
model (in Section 3.3) is that it can adaptively allocate search effort according to the
characteristics of the search space of the problem to be solved, thereby searching more
efficiently. However, even a ”coarse” setting of the parameters in a static HFC model
has demonstrated major improvements in search efficiency on some difficult bench-
mark problems in both GP (Section 4) and GA (Section 5).

Subpopulations at each level can have the same or different sizes and settings for

Evolutionary Computation Volume 13, Number 1 15

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

other evolutionary parameters. It may be important to allow a majority of the total
population to explore the fitness frontier more aggressively, at least at later portions of
the search. This can also be achieved by allowing a relatively large subpopulation size
for the floating subpopulation, which always belongs to the highest activated fitness
level. In addition, it is also preferable to use higher selection pressures (larger tour-
ney sizes, for example) in higher-fitness-level subpopulations to ensure more efficient
exploitation - remember that our HFC mechanism will reduce the tendency to conver-
gence that this otherwise produces. The point is that it should be sufficiently large to
keep multiple distinct strains of individuals and thus promote the efficient mixing of
building blocks or other types of beneficial genetic material. For each level, the popu-
lation can be divided into several subpopulations to promote diversity. The size and
fitness range of each subpopulation can be set. Commonly used diversity maintenance
methods may also be incorporated within each subpopulation if desired.

The migration interval can be set according to the difficulty of the problem. If it is
very difficult to make progress in fitness, it may be better to make this interval longer, in
order to allow more mixing before introducing new genetic material from lower levels.

3.3 Adaptive HFC models

In the static HFC model described above, we need to determine the number of sub-
populations, the number of fitness levels, the relationship of subpopulations to fitness
levels, and the admission threshold of each fitness level. All the admission thresholds
are determined based on some initial examination of the fitness landscape of the prob-
lem, such as the range of the fitness. Adaptation mechanisms can relieve us from this
prerequisite expertise in the problem space and the associated need to determine the
subpopulation topology. Here, two variants of the adaptation scheme are described.
One allocates the subpopulations (and computational effort) adaptively to the fitness
levels as the fitness frontier advances and corresponding levels are activated. Another
variant adaptively adjusts the admission thresholds to follow the progress of the fitness
frontier.

3.3.1 Adaptive Allocation of Subpopulations to Fitness Levels (HFC-ATP)

In the static HFC model, the allocation of subpopulations to fitness levels is config-
ured before the evolution is started. A shortcoming of this method is that in the initial
generations, the high level subpopulations won’t actually contain any qualified indi-
viduals, and so, according to this method, are not activated for evolution. Although
the floating subpopulation (Figure 5a) can be used to enhance the search effort on the
fitness frontier, the computational capability of higher-level subpopulations is largely
wasted before their activation. This reduces the effective population size. One possible
solution to this difficulty is to allow two-way migration. Then individuals of all levels
could be evaluated and unqualified low-fitness individuals in high-level subpopula-
tions could be moved to lower levels; however, this is still likely to yield ineffective
search at the higher-level subpopulations, as at most a few distinct individuals at those
levels survive and remain in those subpopulations early in the evolution process. An-
other solution presented here (Figure 5b) is to adaptively allocate subpopulations to
fitness levels. In the beginning, all subpopulations are allocated to the bottom level.
Later, once certain higher levels get some qualified individuals, then all intermediate
levels are activated and the subpopulations on those activated levels are filled by ad-
mitting qualified individuals or importing lower level individuals. This ”HFC-ATP”
algorithm works like a rubber band. At the initial stage, it is quite compressed, but

16 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

gradually, the rubber band stretches to accommodate individuals with a larger range
of fitnesses. In this paper, subpopulations are allocated evenly to all activated levels.
Details of this algorithm are described in (Hu et al., 2002).

floating subpop

300 60

generation

fitness level

1

2

3

4

(a)

300 60

generation

fitness level

1

2

3

4

(b)

Figure 5: Floating subpopulation (left) & adaptive allocation of subpopulations to fit-
ness levels (right).

3.3.2 Adaptive Setting of Admission Thresholds (HFC-ADM)

One of the difficulties in the HFC evolutionary algorithm is the determination of the ad-
mission thresholds for a given problem. As the fitness landscape is often unknown be-
fore evolutionary search, it is sometimes hard to define appropriate admission thresh-
olds initially. Considering that admission thresholds in HFC are only used to stratify
the population to avoid unfair competition, the behavior of the search is generally not
extremely sensitive to the precise values of these admission thresholds, so that it is not
necessary to set them to exactly optimal values. The only requirement for these thresh-
olds is that the union of the fitness level ranges (which is determined by these admis-
sion thresholds) spans the entire range of possible fitnesses. The adaptive admission
threshold mechanism is composed of a calibration stage and update cycles. During the
calibration stage, the export threshold of the base fitness level is set as the average (or
some percentile) fitness of the whole population at the end of nCalibGen generations.
This base level is used to export higher-fitness ”normal” individuals to higher levels for
further exploitation. Immediately at the end of the calibration process, the standard de-
viation σf , the max fitness fmax , and the average fitness fµ of individuals of all levels
are calculated. Then the fitness range of each level can be calculated by the following
formula:

Admission threshold of base level f0
adm = −∞ (1)

Admission threshold of the first level f1
adm = fµ (2)

Admission threshold of the highest fitness level fNl−1
adm

= fmax − σf (3)
Admission thresholds of other fitness levels Li , are determined by:
f i

adm = fµ + Li × (fmax − σf − fµ)/(Nl − 2) i = 2, ..., Nl − 2 (4)
where Nl is the number of fitness levels of HFC. Here in (4), the basic idea is to

start from maximum fitness value, first set [fmax, fmax − σ] as the fitness range of the
top level, set [−∞, fµ] as the fitness range of base level, and then allocate the fitness
range of [fµ, fmax − σ − fµ] equally to the other Nl − 2 levels.

However, it is clear that as the evolutionary search goes on, higher-fitness indi-
viduals are continually discovered that ruin the stratification developed by the admis-
sion thresholds determined at the initial calibration stage. Therefore a dynamic ad-

Evolutionary Computation Volume 13, Number 1 17

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

Table 1: Shared Parameters for Even-10-parity problem
max evaluations: 300,000 tournament selection size: 7
Init method : half and half Init depth : 4-7
max nodes : 300 max depth: 10
pCrossover: 0.95 pReproduction: 0.05
pMutation: 0.0 reproduction with best selection (elitism)

mission threshold updating mechanism is needed. After each generation, the maximal
fitness,fmax , and the fitness standard deviation of the top-level subpopulations,σf ,
are recomputed to reset the admission thresholds of all the fitness levels except the
base level and the first level, by (3) - (4). To maintain some momentum and to avoid
dramatic variation of the best fitness, we use the AdaptationRate to decide by how
much to change the current admission thresholds:

f i,new
adm

← (1−AdaptationRate)f i
adm

+ AdaptationRate∗f i,exp
adm

(5)
where is the updated admission thresholds for level i, f i

adm is the previous old

admission threshold of level i, f i,exp
adm is the expected new admission threshold for level

i. The idea is that it is better to maintain the smoothness of the admission update with
respect to the increase of fmax.

4 Performance Evaluations of HFC in GP

This section presents experimental results that demonstrate the sustainable search ca-
pability of the HFC model on two GP problems in terms of solution quality and eval-
uations needed. A robust HFC algorithm for GA and its experimental results will be
presented separately in Section 5. Since many interesting real-world problems, such
as neural network synthesis and electrical circuit design, go beyond numerical opti-
mization, two genetic programming problems were chosen, for their variable length
representations and the necessity for incremental evolution. The highly discrete and
rugged landscape of the program space adds additional difficulty to these problems.
One of the test problems is the even-n-parity problem, which is well established as a
benchmark problem for genetic programming (Poli and Page, 2000). This problem is
characterized by the existence of perfect solutions. The other is a real-world electrical
circuit synthesis problem, namely, an eigenvalue placement problem, in which no per-
fect solution is generally known. Testing with these types of problems, it is hoped, will
yield more insight into the HFC model than evaluation on much simpler benchmark
problems.

4.1 The Even-10-Parity Benchmark Problem

As a Boolean function induction problem, the task of the even-n-parity problem is to
evolve a function with n binary inputs and one binary output such that the output of
the function is 1 (true) if and only if an even number of the inputs is evaluated to be true.
The difficulty of this problem depends on the function set exploited and the order (n)
of the target function. Since even-n-parity problems with the standard function set OR,
AND, NOR, NAND provide little gradient information for incremental search and are
deemed an inappropriate benchmark problem for GP (Poli and Page, 2000), we prefer
to use the following function set OR, AND, NOT, XOR in this paper. The inclusion of
the XOR function provides a means for GP to make a succession of improvements.

18 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

Table 2: Parameter Setting for HFC techniques: HFC and HFC-ADM use fixed subpop-
ulation sizes for each fitness level. HFC-ATP dynamically allocates subpopulations to
fitness levels. (see Figure 5)

HFC HFC-ADM HFC-ATP
Exchange frequency: 5 Fitness levels: 9

Admission thresholds
from level 1 to 9:
-100, 550, 600, 650, 700,
750, 800, 850, 900

Threshold adjustment In-
terval: 5
nCalibrateGen : 5
AdaptationRate: 0.95

Admission thresholds from level 1
to 9:
-100, 550, 600, 650, 700, 750, 800,
850, 900

Subpop i belongs to fitness level i for i < 10, subpop
10 is the floating subpop.

Popsize=150 Subpop size for subpop 1 to subpop 9: 10
For floating subpop10: 60

Subpop size for subpops 1 to 10:
10,10,10,10,10,15,15,20,20,30

Popsize=250 Subpop size for subpops 1 to 6: 15
for subpops 7 to 9: 20
for floating subpop10: 100

Subpop size for subpops 1 to 10:
15,15,15,20,20,25,25,25,40,50

Popsize=400 Subpop size for subpops 1 to 9:
20, 20, 20, 20, 30, 30, 30, 40, 40
for floating subpop10: 150

Subpop size for subpops 1 to 10:
20,20,30,30,35,35,40,40, 50, 100

Popsize=800 Subpop size for subpop 1 to subpop 9:
30, 30, 30, 30, 40, 40, 40, 60, 160
for floating subpop10: 400

Subpop size for subpop 1 to subpop
10: 40,40,40, 60, 70,70, 10,80,100,200

4.2 Experimental Settings

In this experiment, five algorithms are evaluated on the even-10-parity problem, all
using the function set mentioned above. The algorithms are labeled single population
(OnePop), multi-population (MulPop), HFC with floating subpopulation (HFC), HFC
with adaptive admission threshold determination mechanism (HFC-ADM), and HFC
with adaptive allocation of subpopulations (HFC-ATP). Four (total) population sizes
(150, 250, 400, 800) are tested for all five algorithms, each with 60 runs so that the results
are statistically significant. The shared parameters for all the experiments are summa-
rized in Table 1. Since there is a random individual generator at the bottom level to
provide new genetic material, mutation was not used here. Note that a certain degree
of elitism is enforced for OnePop and MulPop through the reproduction operator with
best selection operator. This removes the possibility that HFC provides superior per-
formance only by virtue of elitism. For the MulPop algorithm, the whole population is
evenly divided into 10 sub-populations, arranged in a ring topology, as is commonly
done. The migration interval is set as 5 generations. The number of individuals (K) to
be migrated is about 1%, (K = 2, 3, 5, and 8 for population sizes of 150, 250, 400, and
800, respectively). The migration strategy for MulPop is to select the K best individuals
from the donor subpopulation and copy them (without removal from the donor) to re-
place the K worst individuals in the receiving subpopulation. The parameters specific
to the HFC technique and its adaptive variants are summarized in Table 2.

The determination of fitness admission thresholds for HFC and HFC-ATP was
very straightforward. The maximum fitness of the even-10-parity problem is 1024,
and the average fitness of the first 5 generations is typically around 550, so the fit-
ness range of [550, 1024] was evenly allocated to all fitness levels. As will be shown by
the performance of HFC-ADM with adaptive admission threshold determination, HFC
techniques are not generally very sensitive to these parameters. The allocation of sub-
population sizes was decided based on a rough balance between exploring the fitness
frontier and maintaining a supply of intermediate-fitness building blocks or stepping
stones. Generally, more individuals were allocated to higher fitness levels. For HFC
and HFC-ADM, the floating subpopulation size should be big enough for effective ex-

Evolutionary Computation Volume 13, Number 1 19

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

ploration at the highest currently activated fitness level. All of the parameters in Table
2 were set before these runs were made, without tuning them for each specific problem
instance.

Population Size

150 250 400 800

Su
cc

es
s

R
at

e

0

20

40

60

80

100

OnePop
MulPop
HFC
HFC-ADM
HFC-ATP

(a) Comparison of success rates after 300,000 eval-
uations: HFC techniques consistently outperform
standard OnePop and MulPop GP and are essen-
tially invariant with respect to population size.

Population Size

150 250 400 800

A
ve

ra
ge

 B
es

t F
itn

es
s

920

940

960

980

1000

1020

1040

OnePop

MulPop

HFC

HFC-ADM

HFC-ATP

(b) Comparison of average best-of-run fitness. With
given population size and evaluations, HFC tech-
niques consistently achieve better average best fit-
ness, reflecting their robustness of search.

Figure 6: Comparison of success rates after 300,000 evaluations and Comparison of
average best-of-run fitness.

4.2.1 Results

The average best raw fitness of run for each algorithm was tabulated for a given num-
ber of evaluations performed. In the case of the even-10-parity problem, since the per-
fect solution is known, the success rate of each algorithm within 300,000 evaluations
was also measured. It is impressive that, according to Figure 6(a), all three HFC tech-
niques consistently outperformed single population and simple multi-population GP
for all the population sizes. The success rates almost doubled for population sizes 150
and 250 and they were also much higher for population sizes 400 and 800. Consid-
ering the little additional computing effort of HFC to organize the individuals, this
significant improvement might be surprising. The streamlined supply of intermedi-
ate building blocks provided by the assembly line of multiple fitness levels provided
a mechanism for sustainable search without getting stuck at local optima. The sus-
tainable framework also greatly reduced the requirement for large population sizes in
GP. The results in Figure 6 showed that the HFC techniques are very insensitive to the
total population size, once a minimum size requirement is met. On the other hand,
traditional EAs depend strongly on large population sizes to allow them to find good
results before convergence occurs. This is just as predicted by the analysis in Section
2.1.2. In this respect, HFC changes the convergent nature of the existing EA framework
into sustainable search.

To compare search efficiency, the average number of evaluations used by each
method to find the 20 earliest-found perfect solutions was computed, as shown in Fig-
ure 7. (The minimal number of perfect solutions found by all the methods was 20). For
this relatively easy even-parity problem, it shows that traditional EAs may get good re-
sults more quickly but taking a higher risk of premature convergence, while HFCs do
not incur much of a penalty in terms of speed (especially for HFC-ATP, in this case) in
finding the optimal solution and they exhibit much more robustness in finding optimal

20 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

Population Size

150 250 400 800A
ve

ra
ge

 E
va

lu
at

io
ns

 to
 D

is
co

ve
r

a
Pe

rf
ec

t S
ol

ut
io

n

0

10000

20000

30000

40000

50000

60000

70000

80000
OnePop

MulPop

HFC

HFC-ADM

HFC-ATP

Figure 7: Average evaluations to discover a perfect solution: within the limit of 300,000
evaluations, the average numbers of evaluations of HFC techniques to discover perfect
solutions were comparable to those of OnePop and MulPop, although HFC allocates
some subpopulations only for supply of intermediate building blocks. This compar-
ison was made by averaging the evaluation counts only of runs that did find perfect
solutions, and HFC achieved much higher success rates in finding the perfect solutions
(Figure 6). If high evaluation counts were included for unsuccessful runs, HFC meth-
ods would look much more favorable.

solutions (Figure 7). For difficult problems, the ”hasty” conventional EAs will have
much less chance to make such quick progress.

4.3 Analog Circuit Synthesis for Eigenvalue Placement by Genetic Programming

The use of test problems that arise in the real world poses some difficulty as it some-
times requires other investigators to do a significant amount of work in preparing to
run the same problem. However, it is important to study benchmarks that include the
complex and rugged fitness landscapes that many real-world problems exhibit. A prob-
lem that is often encountered in the design of dynamic systems was chosen for study
here-the eigenvalues placement problem. It is a classical ”inverse” design problem, a
particular form of analog circuit synthesis problem. In this problem, an analog circuit is
represented by a bond graph model (Seo et al., 2002), which includes inductors (I), re-
sistors (R), capacitors (C), and Sources of Effort (SE) (corresponding to voltage sources).
The task was to synthesize such a circuit, including its topology and the sizing of its
components, such that the eigenvalues of its characteristic equation approximated a
pre-specified set of eigenvalues as closely as possible. This is an inverse problem, and
its difficulty lies first in the highly rugged and discrete topology search space and then
in the highly multi-modal parameter search space of each circuit topology. The high
degree of nonlinear epistasis adds additional complexity.

A developmental genetic programming approach for analog circuit synthesis
(Koza, 1999) is applied to this synthesis problem (Seo et al., 2002). In this approach,
a program tree composed of topology- and component-parameter-establishing func-
tions and terminals is evolved, based on a pre-defined embryo circuit that establishes
how solution quality is to be measured. The result of this development process is a fi-

Evolutionary Computation Volume 13, Number 1 21

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

1 1 1 R2(1000)SE

R1(1000)

Figure 8: Embryo bond graph for the eigenvalue synthesis problem.

Table 3: Parameter setting for 8-eigenvalue synthesis problem (modified from even-10
parity problem)

8 eigenvalue targets −0.1 ± 5.0j,−1 ± 2j,−2 ± j,−3 ± 0.7j

total population size 500
max nodes 400
max depth 12
Admission thresholds of 9 fitness
levels for HFC and HFC-ATP

-100, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90

Subpopulation sizes for subpops 1 to
10 for HFC and HFC-ADM

25,25,25,25, 30,30,30,30,30,250

nal circuit. Function and terminal sets for this problem have been devised, as reported
in (Seo et al., 2002). The fitness function is defined as follows: for each GP individual,
a circuit is generated with the developmental process. Then its characteristic matrix is
established and its eigenvalues are computed. Each solution eigenvalue is associated
with the nearest eigenvalues of the target set, and the sum of distance errors between
them is calculated, then divided by the order of the target set. A hyperbolic scaling of
fitness is then performed as follows, converting the goal from minimization to maxi-
mization:

Fitness(Eigenvalue) = 0.5 + 1
/

(2 +
∑

Error/Order) (1)

Since the minimal error is 0, the highest possible fitness is 1.0.

4.3.1 Experimental Setting

The embryo circuit used in the experiments is illustrated in Figure 8. It has three mod-
ifiable sites for further development. The 8-eigenvalue target is set in Table 3. The
parameter settings for the five algorithms are the same as for the even-10-parity prob-
lem in Section 4.1 except for the changes noted in Table 3. For each experiment, 40 runs
were conducted, with 300,000 evaluations in each.

4.3.2 Results

With this complex real-world synthesis problem, the sustainable search capability of
the HFC model is expected to enable obtaining much better results without the prema-
ture convergence usually found in experiments with standard GP techniques. The best-
of-run distance errors from the target eigenvalues are averaged for 40 runs. The stan-
dard deviation of the best distance errors is also calculated (Table 4). The simulation
results strongly support the claims of the preceding sections. The HFC-ATP algorithm
again achieves almost half the average distance error with much smaller variance. This
kind of robustness is enabled by the sustainable search capability of HFC.

To evaluate the relative performance of the five approaches, multiple two-tail t-
tests are applied. The result is summarized in Table 5. It shows that the difference
between the standard GP and the HFC techniques is significant at the 1.2% level.

22 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

Table 4: Comparison of Average best-of-run distance error for 8-eigenvalue synthesis
problem

Algorithm OnePop MulPop HFC HFC-ADM HFC-ATP
Mean Distance Error 0.598 0.64 0.458 0.407 0.278
Std.Dev. 0.287 0.363 0.19 0.228 0.15

Table 5: The t-test results for different approaches to an 8-eigenvalue placement prob-
lem: the difference between the standard GP and the HFC techniques is significant at
the 1.2% level, while the difference between OnePop and MulPop is not significant.

t-test MulPop HFC HFC-ADM HFC-ATP
OnePop 0.68 0.012 0.0015 5.8E-09
MulPop 0.0069 0.0010 3.8E-07

HFC 0.28 1.2E-05
HFC-ADM 0.0040

Another criterion useful to compare the sustainable search capability with other
methods is to compute the average evaluation number at which the last progress is
made in runs of a fixed number (300,000) of evaluation steps. The time from this last
progress step to evaluation 300,000, when that time becomes large, likely reflects the
”stagnation” of the search, and is expected to increase (i.e., the last progress step is
earlier) when premature convergence occurs. Table 6 shows that the HFC technique
continues to make progress through evaluation numbers much closer to 300,000, which
means that steady progress is achieved throughout the run. In fact, as the step at which
last progress is made approaches 300,000, evidence that the run has stagnated at all
disappears. On the other hand, the standard GP approaches have stagnated (made no
progress) for 70,000 to 100,000 evaluations before evaluation 300,000, on average.

Using the same parameter settings for a more difficult 10-eigenvalue problem
{−0.1± 5.0j,−1± 2j,−2± j,−3± 0.7j,−4± 0.4j}, we calculate the evaluation num-
bers of last progress for 16 runs of MulPop and HFC-ATP, each run with 400,000 eval-
uations. The difference is even more striking - 263,400 for MulPop with standard de-
viation 106,639, but 392,320 with HFC-ATP with standard deviation 12,534. This result
clearly demonstrates that for this more difficult problem, HFC techniques can achieve
much more robust search and continue to make steady progress.

The robustness and the sustainable search capability are also examined by investi-
gating the relationship between the average of the best eigenvalue location errors over
40 runs and the maximum number of evaluations, ranging from 10,000 to 300,000. Here
HFC-ATP is compared only to MulPop. Experiments for each maximum evaluation
limit are run with different random seeds. The experimental parameters are the same
as in the experiment described above except that for HFC, the subpopulation sizes for

Table 6: Comparison of stagnation times for the 8-eigenvalue placement problem: in
the HFC model, last progress is made much closer to the evaluation limit of 300,000,
and it displays a much smaller tendency to converge.

OnePop MulPop HFC HFC-ADM HFC-ATP
Mean step at which last
progress is made

232,300 204,300 262,500 283,500 283,100

Standard Deviation 64,300 70,700 55,200 18,500 34,900

Evolutionary Computation Volume 13, Number 1 23

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

subpops 1 to 10 are 30,30,40,40,50,50,50,50,60,100. For MulPop, the migration frequency
is every 5 generations, with 10% migration of individuals at that interval, and with a
copying-type migration (migrants appear in new population, but are not removed from
the donor population). The results are presented in Figure 9. The robustness of HFC is
demonstrated by its much lower standard deviation of location errors. The sustainable
search capability is shown by its continuing progress given more evaluations, while for
MulPop, after a certain threshold number of evaluations, no progress is made in any
reasonable number of additional evaluations.

Multi-Pop GP

Evaluation Number (thousands)

0 50 100 150 200 250 300

L
oc

at
io

n
E

rr
or

0.0

.2

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

STD

(a) Multi-population GP

HFC-GP

Evaluation Number (thousands)

0 50 100 150 200 250 300

L
oc

at
io

n
E

rr
or

0.0

.2

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

STD

(b) HFC-GP

Figure 9: Comparison of the average best-of-run location errors vs. number of eval-
uations for multi-population-GP and HFC-GP. Error of 0 is the optimal value. HFC
achieves much more robust search with continuous progress, reflected by its much
smaller standard deviations. Multi-population-GP is less reliable, displaying large
standard deviations of the location error. It also has the tendency that beyond 300 K
evaluations, there will not be much progress, while for HFC-GP, sustainable progress
appears.

5 A Sustainable Genetic Algorithm: the Quick HFC (QHFC)

As a generic framework for sustainable evolutionary computation, HFC is
representation-independent and does not rely on the building block hypothesis as
stated in Holland’s GA theory (2000). Actually, there is no established schema theory
or even consensus on the definition of building blocks in the GP community (O’Reilly
& Oppacher, 1995; Rosca, 1997). The sustainable search capability enabled by HFC on
the GP problems above with variable-length, highly nonlinear interaction and coupling
of program chunks demonstrates the effectiveness of HFC to ensure sustainable search.
The question that naturally arises is whether HFC will work well in the (typically) sim-
pler GA domain-particularly with a binary representation, where extensive theoretical
studies and effective techniques exist and clear comparisons can be made. For exam-
ple, how does HFC compare with other diversity-maintenance techniques in GA? Is it
possible to combine HFC with other methods to produce a better sustainable search
algorithm?

This section describes how the hierarchical fair competition principle can be used
to design a surprisingly simple, effective and robust genetic algorithm, named Quick

24 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

HFC (QHFC), for binary GA problems. This is achieved by combining the ideas of the
HFC and AHFC algorithms described in Section 3 with a simple but effective diversity-
maintenance technique: the deterministic crowding (DC) algorithm (Mahfoud, 1992).
A difficult standard GA test problem, HIFF, is used to show how the often-used DC
diversity-maintenance technique fails, how its performance depends strongly on the
population size and how HFC can be used to make it more robust in terms of both pop-
ulation size and search capability. The performance of QHFC is compared with a stan-
dard GA enhanced by deterministic crowding (DCGA) and DCGA with a multi-partial-
reinitialization method (DCGA+MR), illustrating that the HFC principle can transform
the convergent DCGA into a much more robust and capable search algorithm. It turns
out that QHFC has made it possible to use much smaller population sizes and many
fewer evaluations to solve rather large instances of the HIFF problem.

5.1 Designing a Sustainable Genetic Algorithm Based on the HFC principle

A straightforward implementation of the HFC principle for a binary genetic algorithm
problem simply requires transforming HFC-GP and AHFC-GP in Section 3 into HFC-
GA or AHFC-GA by replacing the tree representation with a binary representation.
However, preliminary experiments showed that these two algorithms don’t work in
that form for binary GA problems. Close examination reveals the reason and pro-
vides further insight into the HFC principle for sustainable evolution. It is well known
that one of the significant differences between GA and GP is that the loss of diversity
in a binary GA with crossover and small mutation rates is much faster than that in
GP. Crossover of two identical binary chromosomes produces two identical offspring,
while in GP, crossover of two identical trees usually produces distinct offspring. As a
result, the levels of HFC-GA converge very quickly for binary problems because of the
fixed allocation of breeding probabilities to levels used in HFC-GA, thereby violating
the HFC principle that the lower level should be able to ensure sustainable export of
individuals (thus maintaining diversity) into higher levels; otherwise the higher level
will just ”die out,” deprived of its supply of new and viable genetic material, as tradi-
tional GA and GP do.

Now the question is reduced to how to ensure sustained and useful diversity for
all intermediate levels. One solution is to allocate much more breeding opportunity
to lower levels. But this will reduce the relative effort of exploitation of higher lev-
els. A better strategy is to do more breeding in lower levels to improve their diversity
only when the higher levels detect that lower levels have converged to some extent,
and then allocate them more breeding opportunities to let them catch up. This re-
quires an effective mechanism to detect the convergence of a subpopulation. There are
many mechanisms to measure the diversity of the population (Wineberg & Oppacher,
2003) and some are used in guiding the balance of exploration and exploitation (Ursem,
2002). Most of these methods require the calculation of genotypic distances between
all possible pairs in the population. Although this calculation can be reduced to O(n)
time complexity (Wineberg & Oppacher, 2003), it is hard to set the diversity thresholds
for all levels in HFC, and diversity measured in this sense may not be the useful di-
versity needed for good evolution (remembering that adding random individuals to
intermediate-fitness populations, for example, increases diversity but hardly improves
search performance). Based on this analysis, a new, practical mechanism is introduced
into the original HFC framework to support the continuing potency of each level in
the HFC framework. Potency here is defined as the capability of a fitness level in HFC
to produce offspring with fitness high enough for export to higher HFC levels. This

Evolutionary Computation Volume 13, Number 1 25

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

mechanism for maintaining the potency of each level except the top level works as fol-
lows: starting from the level below the top level, breeding is conducted successively
in each level, using steady-state breeding methods, while tracking the number of off-
spring produced that are eligible for promotion (migration to the next-higher fitness
level). If a given number of promotable offspring are not produced within a specified
number of evaluations at a given level, then a ”catch-up” procedure is conducted: a
specified fraction of that level’s individuals is replaced by individuals taken from (i.e.,
removed from) the next lower level, and popsize genetic operations and evaluations
are performed. Then, in turn, the openings created at the next lower level are immedi-
ately filled with individuals removed from the level below that, etc., until, at the lowest
level, the openings are filled by new randomly generated individuals (however, further
genetic operations and evaluations are not performed as part of this ”ripple down” fill-
ing of openings). This ”double loop” procedure assures that each level, before it next
breeds, has either recently produced individuals worthy of promotion to the next level
or has received new individuals from the next lower level, thus ensuring its potency to
export higher-level individuals.

This mechanism for sustaining the potency of search does not require evaluating
any measure of the distance among genotypes or phenotypes, and could also be applied
to GP and other sorts of problems. However, the particular QHFC applied here to a
GA, a ”good” distance function was available, so was used in order to demonstrate
how QHFC can transform a ”classical” GA with deterministic crowding into a more
robust and efficient algorithm. The other difference introduced, in order to facilitate
the QHFC application, was to use a generational GA at the top level and a steady-state
GA at the remaining levels for breeding.

The main QHFC algorithm is summarized in Figure 10 along with its subroutines
in Figure 11. Compared with HFC-GP and AHFC-GP, QHFC has many fewer parame-
ters to specify, and the admission thresholds are automatically adjusted.

5.2 GA Test problem and the Genetic Algorithms compared

We test QHFC with a well-known standard test problem in GA: the hierarchical if-and-
only-if (HIFF) problem (Watson et al., 1998), an instance of hierarchically decomposable
functions (HDFs). In this problem, a binary string of length 2K is to be evolved, where
K is the number of levels in the hierarchy. The fitness of a binary string is defined by
the recursive function shown below

where B is a block of bits (b1, . . . , bn), |B| is the length of the block (n), bi is the i-th
element in block, BL and BR are the left and right half substrings.

Using HIFF as the test problem is motivated by the fact that diversity maintenance
is critical to prevent premature convergence and to solve it successfully (Watson & Pol-
lack,1999). It is not a separable problem because of the strong non-linear interactions
of its building blocks at all levels. Several approaches have been applied to this prob-
lem including deterministic crowding, fitness sharing (Watson & Pollack,1999, 2000)
and several ”competent GAs” with linkage learning mechanisms (Pelikan & Goldberg,
2001), providing a good basis for comparison.

In the experimental study here, QHFC is compared with the generational
deterministic crowding GA (DCGA) and its multi-partial-reinitialization version
(DCGA+MR) (see Figure 12). DCGA (without multi-partial-reinitialization) is imple-
mented simply by setting percentRefill=0 in Figure 12.

26 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

QHFC-GA Algorithm

Parameters
Total population size: |Pt| , bit mutation rate: pm

L: number of subpopulations (levels) of QHFC
γ: size factor parameter, the ratio of higher level archive size w.r.t

next lower level archive size |Pk−1| = |Pk|.γ
breedTopFreq: number of generations to breed top level between potency testing

of lower levels (via breeding)
detectExportNo: number of individuals from a level that must be promoted for

the level to be considered potent catchupGen: maximum evaluations in any but
top level,normalized by level’s popsize, for potency test

percentRefill: percentage of this level’s popsize to import from next lower
level when there is no progress in the top level,or when lower levels fail
potency test (do not furnish detectExportNo qualified immigrants within
specified number of evaluations)

noprogressGen: maximum number of generations without any fitness progress
in top level before triggering importing of percentRefill individuals from
next lower level

Main Procedure

1.Initialization
randomly initialize and evaluate the HFC subpopulations
calculate the average fitness of the whole population and set it as the
admission fitness of the bottom level,fmin , which is fixed thereafter

remove individuals with fitness less than fmin, and equally distribute the
rest of the individuals among the levels, according to fitness, thereby
determining the admission threshold of each level

generate random individuals to fill the openings in each archive
2. While termination condition is false

breed the top level for breedTopFreq generations using generational determ-
inistic crowding and applying mutation after each crossover

if no progress on best fitness of the whole population for noprogressGen
generations,
call import from below, but ensuring the best individual is not replaced

if average fitness of top level >2 ∗ fL−1

adm
− fL−2

adm
, adjust admission thresholds

by evenly allocating fitness range to each level:
fk

adm
= fmin + k(fmax − fmin)/L,for k = 0 to L− 1

where fk

adm
is the admission fitness of level k,

fmax is the maximum fitness of the whole population
//potency testing
for each level from L− 2 to 0
call do potency testing
if not succeed
call import from below to replace (at random) percentRefill percentage
of the current level
breed one generation at this level

endif
end for

end while

Figure 10: QHFC Algorithm

5.3 Experimental Results

The following experiments compared the performance of QHFC, DCGA, DCGA with
multi-partial-reinitialization for the 128-bit and 256-bit non-shuffled HIFF problems
(the 64-bit HIFF problem was not addressed because it is so easy that any conclu-
sion from it may be misleading). In all three algorithms compared, simple two-point

Evolutionary Computation Volume 13, Number 1 27

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

Procedure do potency testing (l)
l is the level for potency testing

catchup evaluation ←− 0
exportedIndividual ←− 0
while catchup evaluation < catchupGen* and exportedIndividual< detectExportNo

randomly pick two individuals from level
crossover, mutate, and evaluate
if fitness of offspring >f l + 1

adm
,

promote it (them) to level (replacing randomly any but the best individual
or other individuals just promoted) and call import from below to
replace its (their) closest parent(s)
exportedIndividual ←− exportedIndividual +1

else
do deterministic crowding with the 4-member family

endif
end while
if fail to promote detectExportNo individuals

return not success
else

return success
Procedure end

Procedure import from below(l, nImport, victimList)
l: the level into which to import new individuals from next lower level
nImport: the number of individuals to import from next lower level
victimList: a list of indices of individuals which will be replaced

by the imported new individuals

if l = 0
randomly generate nImport new individuals and import into (lowest) level l

else
randomly choose nImport individuals from level l− 1 to replace individuals in
victimList. If victimList is empty, randomly choose victim individual from
current level. Put the indices of the new immigrant individuals from level
l− 1 into the newVictimList of level l− 1, whose openings will eventually be
filled with individuals from level l− 2 (this assures the replacement of
individuals removed from level l − 1).
call import from below (l− 1, nImport, newVictimList)

Procedure end

Figure 11: Subroutines of QHFC Algorithm

crossover with mutation was used, where mutation is applied on offspring immedi-
ately after crossover. All methods used a bit mutation rate of 0.0075 for both 128-bit
HIFF and 256-bit HIFF. For the DCGA-MR, the percentRefill=0.25, maxNoProgress-
Gen=10. For QHFC, in all the experiments, with different population sizes and differ-
ent problem sizes, the following set of parameters was used.

L: 5 γ: 0.7 breedTopFreq : 2 detectExportNo : 2
percentRefill : 0.25 catchupGen : 20 noprogressGen : 10

All three algorithms were experimented using a series of population sizes from 100
to 4000, all with maximum number of evaluation 1,000,000 and each experiment with
30 runs. The result is illustrated in Figure 13 and Figure 14.

Figure 13 clearly shows that for the simpler 128-bit HIFF problem in which diver-
sity maintenance is not a big issue, using a simple GA with deterministic crowding
could solve the problems quite well given a sufficient population size. However, for
real-world problems, correctly estimating the required population size is not easy and

28 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

Figure 12: Deterministic Crowding GA with/out multi-partial-reinitializations

DCGA(-MR) Main Procedure
percentRefill: the percentage of the population that will be replaced by

random individuals.
maxNoProgressGen: maximum number of generations with no progress on the

maximum fitness of the population before we partially reinitialize
the population

1.Intialize the population randomly
2.Repeat until stopping condition

randomly group individuals into pairs
do crossover and mutation for each pair of individuals p1, p2 to produce
two offspring c1, c2

according to pairing rule, each offspring is paired with and compete
against one parent.

if the fitness of the offspring is better than that of its corresponding
parent, the parent gets replaced

check if maximum fitness has not been updated after maxNoProgressGen
generations, we replace percentRefill percent of the population with
randomly generated individuals.

Pairing rule: if H(p1, c1) + H(p2, c2) < H(p1, c2) + H(p2, c1) then pair p1 with c1,
and p2 with c2, otherwise pair p1 with c2 and p2 with c1, where H. returns
the Hamming distance between two individuals.

population sizing theory can be unreliable and difficult to apply (Goldberg, 2003). Also,
the idea of using large populations to maintain diversity is not a scalable approach,
as illustrated in the 256-bit HIFF problem, where a GA with deterministic crowding
fails in half 15 of 30 runs even with a population size of 4000, while QHFC can still
achieve 25 successful runs out of 30 with a population size 100. This robustness is
derived from the sustainable diversity promoting mechanisms in HFC, where genetic
material from lower levels provides the non-exhaustible diversity. This is a key fea-
ture that distinguishes HFC from other diversity maintenance techniques such as nich-
ing, restricted mating, island or multi-population models, pygmies and civil servants,
and species-conserving GA, as mentioned in Section 1. As regards the well-known
partial-reinitialization approach, Figure 14 shows that DCGA+MR performed the worst
among the three methods, simply by wasting evaluations on hybrids of high-fitness in-
dividuals with random individuals, where high-fitness individuals with strongly cou-
pled components cannot typically be improved by inserting junk alleles.

The advantage of HFC is not limited to robustness of search even with small pop-
ulation sizes; it also solves many problems with fewer evaluations, as illustrated in Fig-
ure 14. For simple problems like 128-bit HIFF, a GA with deterministic crowding wins
by using fewer evaluations. This is achieved by allocating all breeding opportunities to
high-fitness individuals maintained in the population, while QHFC loses by allocating
a portion of its evaluations to lower levels to ensure sustainable diversity. However,
one can see that this preventive measurement does not incur a very large penalty in
terms of number of evaluations. The strategy of allocating a fraction of the evaluations
to lower fitness levels is rewarded by increased robustness and the capability to solve
more difficult problems, as shown for the 256-bit HIFF problems in Figure 14. With a
population size of 4000, a traditional DCGA with/without multi-partial-reinitialization
found the optimal solutions in fewer than 15 of 30 runs (Figure 13). The successful runs
were obtained using three times the number of evaluations used by QHFC with a pop-

Evolutionary Computation Volume 13, Number 1 29

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

Population Size

0 1000 2000 3000 4000

N
um

be
r

of
 S

uc
ce

ss
 R

un
s

0

5

10

15

20

25

30

35

DCGA
DCGA+MR
QHFC

Figure 13: Comparison of QHFC with DCGA with/without multiple partial reinitial-
izations in terms of robustness of the search capability and robustness in terms of popu-
lation size. For the simple 128-bit HIFF problem, DCGA can achieve robust search if the
population size is sufficiently large (¿=1000). QHFC, instead, can do very robust search
from population sizes 100 to 4000. For the difficult 256-bit HIFF problem, a population
size of 4000 for DCGA can only find the solution in half the 30 runs, while QHFC can
solve it very robustly while still using population sizes from 100 to 4000. DCGA+MR
apparently suffers from the disturbance of imported random individuals and works
worse in both case than DCGA.

ulation size of 2000, which also succeeded in all 30 runs. The influence of population
size in QHFC is interesting. With an extremely small population size of 100, QHFC can
still achieve quite robust search and find the optimal solution in 25 runs out of 30, but
with a much larger variation in the number of evaluations. With a larger population
size (1000-2000), QHFC can find the optimal solutions within more consistent numbers
of evolutions. When population size is set larger than necessary, QHFC takes more
evaluations to find the optimal solutions than with smaller population sizes, but still
many fewer than DCGA needs. This increased average number of evaluations to find
optimal solutions with overly large population size is caused by spending too many
evaluations in lower levels, since the same set of parameters was used for all experi-
ments. One important lesson to draw here is that QHFC is quite scalable for the HIFF
problem, in that the required population size and the number of evaluations needed
do not vary much for population sizes from 100 to 4000. QHFC is also seen to be quite
scalable in terms of problem size, with about 160,000 evaluations needed for 128-bit
HIFF and about 234,000 for 256-bit HIFF.

Results on HIFF problems have also been reported in (Watson & Pollack, 1999),
where a GA with domain-knowledge-based fitness sharing and a population size of
1000 were used. It showed that even this fitness sharing method with considerable do-
main knowledge fails on the 128-bit and 256-bit problems, while QHFC with popula-
tion size 100 and 200 consistently and reliably solved the 128-bit and 256-bit HIFF prob-
lems. The results of QHFC were also compared with those of the somewhat compli-
cated hierarchical Bayesian Optimization Algorithm (Pelikan & Goldberg, 2001, 2003),

30 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

HIFF 128

Population Size
0 1000 2000 3000 4000

N
um

be
r

of
 E

va
lu

at
io

ns

0

100x103

200x103

300x103

400x103

500x103

600x103

DCGA
DCGA+MR
QHFC

Figure 14: Comparing QHFC with DCGA with/without partial reinitializations in
terms of average number of evaluations needed to find the optimal solutions. For the
simple 128-bit HIFF, DCGA wins with slightly fewer evaluations, but HIFF wins by
being able to use much smaller population sizes. For the 256-bit HIFF, QHFC wins in
terms of both robustness of search (finding the optimal solutions in 25-29 runs out of
30 for the population sizes of 100 or higher) and number of evaluations (with popula-
tion size 2000, QHFC succeeded 29 times, using only about one-third the evaluations
of DCGA (with a population size 4000 and with only half the runs successful).

one of the competent GAs with explicit linkage learning mechanisms. The optimal
result of hBOA on the 128-bit HIFF was about 26,000 evaluations, with a standard de-
viation of about 12,000, and on the 256-bit HIFF, was about 88,000 evaluations, with a
standard deviation of about 10,000. QHFC, without any linkage learning mechanism,
achieved competitive results with much smaller population sizes (down to 100), re-
liably. For the 128-bit HIFF, QHFC used about 160,000 evaluations, and used about
234,000 for 256-bit HIFF (averaged over 30 runs). Clearly QHFC, as a linkage-blind
approach, uses many more evaluations. But about half of 30 QHFC runs succeeded
within 85,000 evaluations for 128-bit HIFF and within 153,000 evaluations for 256-bit
HIFF. The discrepancy in number of evaluations needed compared with hBOA is less
with larger HIFF problems - the QHFC appears to be scaling with a lower slope than
the hBOA on this problem. And it is hard to do a precise comparison: the results re-
ported in (Pelikan & Goldberg, 2001) are the best results after empirically tuning the
population sizes of hBOA to minimize the number of evaluations for each problem in-
stance, whereas the same set of parameters was used for all QHFC experiments here,
independent of the population size and problem size. QHFC may, in fact, be tunable to
require fewer evaluations than reported here. QHFC has also been tried on some other
hierarchical deceptive functions (to be reported elsewhere), again obtaining very good
results.

However, one fact to be pointed out is that the performance of QHFC here does
not apply to shuffled HIFF problems, while hBOA can solve both shuffled and non-
shuffled HIFF reliably. As a shuffled HIFF problem is not solvable by GAs with a sim-
ple crossover operator (Watson & Pollack, 2000), i.e., the type used with QHFC here,
the conclusion is that QHFC may greatly improve the robustness and scalability of var-
ious EAs, so long as the operators used are appropriate to the given problem. Based

Evolutionary Computation Volume 13, Number 1 31

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

on the scalability and robustness of QHFC on the hierarchical HIFF problem with tight
linkage, it seems that QHFC can achieve a reasonable level of hierarchical problem solv-
ing capability. Since the simple crossover operator is the bottleneck for QHFC to solve
shuffled HIFF problems, one interesting idea is to combine QHFC with BOA and to see
if this hybrid can compete with hBOA (Pelikan & Goldberg, 2003). To do that, one only
needs to replace the crossover operator in QHFC here with the Bayesian model build-
ing method in BOA. The combination of QHFC with hBOA also appears extremely
promising.

6 Analysis and Discussion of the HFC model

6.1 Examining HFC in Terms of Diversity Maintenance and Incremental Evolution

Although HFC does not manage diversity per se as an approach to ensuring sustainable
evolution, HFC essentially provides several effective ways that do maintain diversity.
First, the continuous introduction of random individuals into the lowest level subpop-
ulations ensures the supply of diversified genetic material, which can then be exploited
in the ”fair competition environment” of low-fitness-level subpopulations. Thus, HFC
implements the equivalent of an effective multi-start or re-initialization mechanism on
a continual basis. HFC also maintains diversity by decreasing the risk of dominance by
the earliest-discovered high-fitness individuals. At each fitness level, HFC ensures that
the competition of individuals is fair. Only individuals with comparable fitnesses are
allowed to stay in a certain fitness level, and new competitive immigrants from lower
levels are continuously incorporated. If a new offspring turns out to be extraordinarily
fit, it will immediately emigrate to a yet-higher fitness level. So, essentially, the local
selection pressure at each specific level is low while the global selection pressure is
maintained by the stratified structure of fitness levels.

The structure of HFC is especially suited for incremental evolution, where the so-
lutions usually need a steady-state developmental process for refinement. In HFC, this
process is realized by the climb of developing individuals from lower fitness levels to
higher fitness levels. Along the way, they compete only with developmentally similar
individuals, assuring them sufficient time to ”mature.”

6.2 HFC’s Stepping Stone Supply vs. Explicit Linkage Learning or Modular
Approach

HFC works by ensuring continuous availability of ”stepping stones” - individuals at a
hierarchy of fitness levels and accompanying levels of coadaptation of genetic material,
populating the range from randomly generated individuals to the best yet discovered.
It assures the descendants of newly generated individuals time for ”maturation” in
the presence of other individuals of similar fitness, throughout the fitness hierarchy,
avoiding strong selection pressure or competition with more fit individuals. HFC does
not require the existence of building blocks to work well, but takes advantage of them
implicitly if they are present. This is in contrast with the explicit building block ex-
ploitation in messy GA and other linkage-learning GAs. It is also different from the
half-blind building block exploitation in the ADF mechanism of GP. However, the ap-
parent effectiveness of HFC justifies its role as a generic framework for sustainable
evolutionary search, which is not guaranteed by linkage learning and other modular
approaches alone. Coupling the sustainable search capability of HFC with the explicit
building-block-discovery capability of linkage learning is expected to achieve a syner-
gistic effect for suitable problems as discussed in Section 5.

32 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

6.3 HFC, Restarting, and the Short-Run-or-Long-Run Dilemma

HFC provides a good solution to the short-run-or-long-run dilemma (Luke, 2001; Gold-
berg, 1999). With a given number of total evaluations available, it is hard to decide
whether it is better to run multiple (independent or serial) epochs with small popula-
tion sizes or to run a single epoch with a large population size. Running with large
population sizes may lead to convergence too quickly due to unbalanced scaling of
building blocks (Goldberg, 1999) while small population sizes may not provide suffi-
cient building blocks. Use of a rejuvenating operator still suffers from lack of inter-
mediate building blocks, as discussed in Section 2.2.1. However, HFC, which is not
very sensitive to the population size, makes it possible to use much smaller population
sizes, while preserving the capability for sustainable search. It is a natural mixing of
implicit parallel and serial processing (Goldberg, 1999). Compared with multi-epoch
EAs or other restarting techniques, HFC saves a huge amount of computational effort
by reusing building blocks.

6.4 HFC and Other Schemes with Hierarchical Organization of Subpopulations

Some other EAs also employ a hierarchical organization of subpopulations. The Pyra-
mid GA (Aickelin, 2000) used lower-level subpopulations to optimize single aspects (of
the objective function) of the problem while higher levels imported individuals from
lower levels for further recombination. Hsu et al. (2002) used similar ideas (LLGP) for
agent evolution. The injection island GA (or iiGA) (Lin et al., 1994) used a hierarchical
organization to implement multi-resolution or other heterogeneous, layered search. As
a sustainable search framework, HFC is conceptually different from these approaches,
which still suffer from the convergent nature of the traditional EA framework. In HFC,
the hierarchical organization of subpopulations by fitness provides a mechanism for
maintaining the intermediate stepping stones necessary for sustainable search.

6.5 The HFC Model as a Generic Framework for Sustainable Evolutionary Search

While HFC is attractive for the performance improvement it offers, it is more strongly
intended as defining a generic framework for continuing or sustainable evolutionary
search. It is compatible with most existing techniques, such as Species Preserving GA
(Li et al., 2002), fitness sharing and crowding, linkage learning, etc. It is a macro-level
structure or framework in which existing techniques can be applied at each fitness level
as needed. Moreover, the essential idea of the HFC model is the capability to maintain
multiple levels of intermediate-fitness stepping stones to allow sustainable search. In
this sense, the explicit hierarchical organization may not always be necessary, although
stratification of breeding by fitness level is another useful feature enabled by that orga-
nization. The current HFC model may become less efficient in problems where the ge-
netic operators used are not suitable and thus there is no gradient information to guide
the exploration for building blocks. For problems requiring assembly of widely-spread
schemata (i.e., exhibiting strong epistasis at sites widely distributed on the chromo-
some), such as the shuffled HIFF problem of (Watson & Pollack, 2000), HFC with a tra-
ditional GA may not be enough for effective search. Coupling HFC with linkage learn-
ing techniques may prove to be necessary in such cases, because ordinary crossover is
too disruptive to the important schemata.

Evolutionary Computation Volume 13, Number 1 33

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

7 Conclusions and Future Work

7.1 Conclusions

In this paper, the Hierarchical Fair Competition (HFC) model is proposed as a generic
framework for a sustainable evolutionary search for the solution to complex problems.
This sustainable search capability is achieved by ensuring sustained access to ”step-
ping stones” of intermediate fitness levels in a sequence of fitness-stratified breeding
pools. For problems exhibiting building block structure, these pools act as repositories
containing a succession of increasingly large and fit assemblies of such building blocks.
Understanding the dynamics of HFC provides a new insight into the premature con-
vergence of EAs as well as the structure of an EA itself. Instead of trying to escape
local attractors from relatively highly converged/evolved populations containing indi-
viduals having strongly coupled components, a better strategy is to ensure sustainable
search by allowing the emergence of new optima in a bottom-up manner.

The convergent nature of the extant EA framework is examined in terms of the
effect of the continuous increase of the average fitness of the population. This inherent
property makes the horizontal-spreading diversity maintenance techniques, such as
niching, inefficient in the case of complex, highly multimodal problems, as is common
in the program spaces of GP. An argument is made that it is important that, at any
time, the population contain some number of ”stepping stones” - intermediate-fitness
individuals, continually updated by synthesis from lower-level stepping stones, and
managed so as to assure that they are capable of producing higher-fitness individuals.

Inspired by the fair competition principle in societal and economic systems, the
HFC model consists of three components: subpopulations structured hierarchically
according to fitness, a random individual generator which is active throughout the
evolutionary process, and a mandatory, universal migration policy from lower fitness
levels to higher fitness levels. The assembly-line structure of HFC enables it to search
the problem space with steady-state progress by maintaining a hierarchy of stepping
stones, spanning the space from randomly generated individuals to the most fit indi-
viduals discovered. HFC is representation independent and thus applicable to binary-
coded GAs, integer- or real-valued GAs, tree-based genetic programming, etc. This
model shows good characteristics in terms of diversity maintenance, incremental evo-
lution and building block exploitation.

HFC and two variants were evaluated with a standard GP benchmark problem
(even-10-parity) and a complex real-world analog circuit synthesis problem. Another
easy-to-use HFC algorithm, QHFC, was introduced and applied to a difficult bench-
mark GA problem - HIFF. It solves non-shuffled HIFF with many fewer evaluations
and much smaller population sizes as compared to deterministic crowding, contrasting
sharply with prevailing GA population sizing theory (Harik et. al., 1999), which usu-
ally assumes a single-thrust GA model as discussed in Section 2.1.3. In all of these ex-
periments, HFC, with its sustainable search capability, achieved much better robustness
and found better solutions in terms of average best fitness, and using fewer evaluations,
than other GA and GP techniques attempting to avoid premature convergence. The t-
test for the analog circuit synthesis problems and the detailed comparison of QHFC
and DCGA with or without multi-partial-reinitialization demonstrated the significant
performance difference between HFC and a typical EA framework.

As a generic framework, HFC constitutes a useful technique that improves existing
EAs. In addition to the QHFC first reported here (combining deterministic crowding
and HFC), a multi-objective extension of HFC has also been studied (Hu, et. al., 2003).

34 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

Additionally, a single-population-based ”continuous” (CHFC) structure has also been
proposed and tested, and appears very promising (Hu, Goodman et al., 2003).

7.2 Future work

There are several important improvements needed in the HFC sustainable EA model.
The first is to introduce some control mechanisms to manage a persistent type of admis-
sion buffer to assure that immigrant stepping stones are sufficiently exploited. While
diversity-promoting schemes are used in QHFC to avoid convergence of each fitness
level, making use of a genotypic distance measure, it may be possible to eliminate the
distance function, which would make QHFC immediately useful for genetic program-
ming and many other problems in which a distance function is problematic to define.
Another important task is to couple linkage learning techniques with HFC to attack
large complex problems with arbitrary linkage patterns. Combination of HFC with
hBOA appears promising. As HFC is a representation-independent solution to the pre-
mature convergence problem, hybridization of HFC with evolution strategies may also
achieve synergistic effects and make it possible to find solutions to more challenging
problems.

Acknowledgment

The first author would like to thank his previous advisor, Professor Shuchun Wang of
Beijing University of Aeronautics & Astronautics of China for encouraging him to use
societal and biological models in AI research. We are also grateful to Dr. Riccardo Poli
for the sub-machine-code for the even parity problem. This work was supported by the
National Science Foundation under contract DMI 0084934.

References

Aickenlin, U. and Dowsland, K. (2000). Exploiting problem structure in a genetic algorithm
approach to a nurse rostering problem. Journal of Scheduling, 3(3):139–153.

Angeline, P. J. and Pollack, J. B. (1994). Coevolving high-level representations. In Proceedings of
Artificial Life III. Addison-Wesley.

Bonner, J. T. (2000). First Signals : The Evolution of Multicellular Development. Princeton University
Press.

Cobb, H. and Grefenstette, J. J. (1993). Genetic algorithms for tracking changing environments.
In Proc. Fifth Int. Conf. on Genetic Algorithms, pages 523–530.

Darwen, P. (1996). Co-evolutionary Learning by Automatic Modularisation with Speciation. PhD
thesis, University of New South Wales.

Eby, D., Averill, R. C., Goodman, E., and Punch, W. (1999). Optimal design of flywheels using an
injection island genetic algorithm. Artificial Intelligence in Engineering Design, Analysis and
Manufacturing, 13:389 –402.

Goldberg, D. E. (1989). Sizing populations for serial and parallel genetic algorithms. In Proc.
Third Internat. Conf. on Genetic Algorithms, pages 70–79.

Goldberg, D. E. (1999). Using time efficiently: Genetic-evolutionary algorithms and the continu-
ation problem. Technical report, University of Illinois at Urbana-Champaign.

Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Competent Genetic Algorithms.
Kluwer Academic Publishers, Boston, MA.

Evolutionary Computation Volume 13, Number 1 35

J. Hu, E.D. Goodman, K.S. Seo, Z. Fan, and R. Rosenberg

Goldberg, D. E., Deb, K., and Horn, J. (1992). Massive multimodality, deception, and genetic
algorithms. In Manderick, R. M. . B., editor, Parallel Problem Solving From Nature II, pages
37–46. Amsterdam: North-Holland.

Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G. (1993). Rapid, accurate optimization of dif-
ficult problems using fast messy genetic algorithms. In Fifth Int. Conf. on Genetic Algorithms.

Harvey, I. (1992). Species adaptation genetic algorithms: A basis for a continuing saga. In Toward
a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life,
pages 346–354, Cambridge, MA. MIT Press/Bradford Books.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi, N. (1997). Evolutionary robotics:
the sussex approach. Robotics and Autonomous Systems, 20:205–224.

Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and hyperplane-defined func-
tions. Evolutionary Computation, 8(4):373–391.

Hsu, W. H. and Gustafson, S. M. (2002). Genetic programming and multi-agent layered learning
by reinforcements. In Langdon, W. B. e. a., editor, Proceeding of the Genetic and Evolutionary
Computation Conference. Morgan Kaufmann.

Hu, J., Goodman, E. D., and Seo, K. (2003). Continuous hierarchical fair competition model for
sustainable innovation in genetic programming. In Riolo, R. and Worzel, W., editors, Genetic
Programming Theory and Practice, chapter 6. Kluwer Publishers, Boston, MA.

Hu, J., Goodman, E. D., Seo, K., and Pei, M. (2002). Adaptive hierarchical fair competition (ahfc)
model for parallel evolutionary algorithms. In Proc. 2002 Genetic and Evolutionary Computa-
tion Conference. New York.

Koza, J. H. (1994). Genetic Programming II. MIT Press, Cambridge, Massachusetts.

Koza, J. H., Bennett III, B. N., Andre, D., , and Keane, M. A. (1999). Genetic Programming III:
Darwinian Invention and Problem Solving. MIT Press, Cambridge, Massachusetts.

Koza, J. R., Keane, M. A., Yu, J., Bennett III, F., and Mydlowec, W. (2000). Automatic creation of
human-competitive programs and controllers by means of genetic programming. Journal of
Genetic Programming And Evolvable Machines, 1:121–164.

Li, J. P., Balazs, M., Parks, G. T., , and Clarkson, P. J. (2002). A species-conserving genetic algo-
rithm for multimodal function optimization. Evolutionary Computation,, 10(3):207–234.

Lin, S.-C., Goodman, E. D., and Punch, W. (1994). Coarse-grain parallel genetic algorithms:
Categorization and new approach. In IEEE Conf. on Parallel and Distribributed Processing,
volume 11.

Luke, S. (2001). When short runs beat long runs. In et al., L. S., editor, Proc. 2001 Genetic and
Evolutionary Computation Conference. Morgan Kaufmann.

Mahfoud, S. (1992). Crowding and preselection revisited. In Parallel Problem Solving from Nature,
pages 27–36. North-Holland.

Mahfoud, S. W. (1995). Niching methods for genetic algorithms. PhD thesis, University of Illinois at
Urbana-Champaign.

Pelikan, M. and Goldberg, D. E. (2001). Escaping hierarchical traps with competent genetic al-
gorithms. In et. al., I. L. S., editor, Proc. GECCO–2001 Genetic and Evolutionary Computation
Conference. Morgan Kaufmann.

Poli, R. and Page, J. (2000). Solving high-order boolean parity problems with smooth uniform
crossover, sub-machine-code gp and demes. Genetic programming and evolvable machines,
1:37–56.

36 Evolutionary Computation Volume 13, Number 1

Hierarchical Fair Competition Framework

Potter, M. and De Jong, K. (2000). Cooperative coevolution: An architecture for evolving coad-
apted subcomponents. Evolutionary Computation, 8(1):1–29.

Rosca, J. and Ballard, D. (1994). Hierarchical self-organization in genetic programming. In 11th
Internat. Conf. on Machine Learning. Morgan Kaufmann.

Ryan, C. (1996). Reducing premature convergence in evolutionary algorithms. PhD thesis, National
University of Ireland.

Seo, K., Hu, J., Fan, Z., Goodman, E., and Rosenberg, R. (2002). Automated design approaches
for multi-domain dynamic systems using bond graphs and genetic programming. The In-
ternational Journal of Computers, Systems and Signals, 3:55–70.

Simon, H. (1973). The organization of complex systems. In Pattee, H. H., editor, Hierarchy Theory
- The Challenge of Complex Systems. George Braziller Publisher, New York.

Stanley, K. and Miikkulainen, R. (2002). Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 10:99–127.

Torresen, J. (2002). A scalable approach to evolvable hardware. Genetic Programming and Evolvable
Machines, 3:259–282.

Tsutsui, S. and Ghosh, A. (1998). Search space division in gas using phenotypic squares estimates.
Information Sciences, 109(1-4):119–133.

Vassilev, V. and Miller, J. (2000). Scalability problems of digital circuit evolution. In Proc. 2nd
NASA/DOD Workshop on Evolvable Hardware. Los Alamitos, California.

Waddington, C. (1942). The canalization of development and the inheritance of acquired charac-
ters. Nature, 150:563–565.

Watson, R. and Pollack, J. (1999). Hierarchically-consistent test problems for genetic algorithms.
In Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A., editors, Proc.
1999 Congress on Evolutionary Computation.

Whitley, D., Mathias, K., and Fitzhorn, P. (1991). Delta-coding: An iterative search strategy for
genetic algorithms. In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms, pages 77–84.

Yao, X. and Higuchi, T. (1998). Promises and challenges of evolvable hardware. IEEE Trans.
Systems, Man, and Cybernetics, Part C, 28(4):55–78.

Evolutionary Computation Volume 13, Number 1 37

